Role of hyperphosphatemia and 1,25-dihydroxyvitamin D in vascular calcification and mortality in fibroblastic growth factor 23 null mice.

نویسندگان

  • Jason R Stubbs
  • Shiguang Liu
  • Wen Tang
  • Jianping Zhou
  • Yong Wang
  • Xiaomei Yao
  • L Darryl Quarles
چکیده

Fibroblastic growth factor 23 (FGF23) regulates renal phosphate reabsorption and 1alpha-hydroxylase activity. Ablation of FGF23 results in elevated serum phosphate, calcium, and 1,25-dihydroxyvitamin D3 [1,25(OH)(2)D] levels; vascular calcifications; and early death. For determination of the independent roles of hyperphosphatemia and excess vitamin D activity on the observed phenotypic abnormalities, FGF23 null mice were fed a phosphate- or vitamin D-deficient diet. The phosphate-deficient diet corrected the hyperphosphatemia, prevented vascular calcifications, and rescued the lethal phenotype in FGF23 null mice, despite persistent elevations of serum 1,25(OH)(2)D and calcium levels. This suggests that hyperphosphatemia, rather than excessive vitamin D activity, is the major stimulus for vascular calcifications and contributes to the increased mortality in the FGF23-null mouse model. In contrast, the vitamin D-deficient diet failed to correct either the hyperphosphatemia or the vascular calcifications in FGF23 null mice, indicating that FGF23 independently regulates renal phosphate excretion and that elevations in 1,25(OH)(2)D and calcium are not sufficient to induce vascular calcifications in the absence of hyperphosphatemia. The vitamin D-deficient diet also improved survival in FGF23 null mice in association with normalization of 1,25(OH)(2)D and calcium levels and despite persistent hyperphosphatemia and vascular calcifications, indicating that excessive vitamin D activity can also have adverse effects in the presence of hyperphosphatemia and absence of FGF23. Understanding the independent and context-dependent interactions between hyperphosphatemia and excessive vitamin D activity, as well as vascular calcifications and mortality in FGF23 null mice, may ultimately provide important insights into the management of clinical disorders of hyperphosphatemia and excess vitamin D activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vivo genetic evidence for suppressing vascular and soft-tissue calcification through the reduction of serum phosphate levels, even in the presence of high serum calcium and 1,25-dihydroxyvitamin d levels.

BACKGROUND Klotho-knockout mice (klotho(-/-)) have increased renal expression of sodium/phosphate cotransporters (NaPi2a), associated with severe hyperphosphatemia. Such serum biochemical changes in klotho(-/-) mice lead to extensive soft-tissue anomalies and vascular calcification. To determine the significance of increased renal expression of the NaPi2a protein and concomitant hyperphosphatem...

متن کامل

Bicarbonate-sensitive calcification and lifespan of klotho-deficient mice.

Klotho, a protein counteracting aging, is a powerful inhibitor of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] formation and regulator of mineral metabolism. In klotho hypomorphic (kl/kl) mice, excessive 1,25(OH)2D3 formation leads to hypercalcemia, hyperphosphatemia and vascular calcification, severe growth deficits, accelerated aging and early death. Kl/kl mice further suffer from extracellular vol...

متن کامل

How fibroblast growth factor 23 works.

There is a discontinuum of hereditary and acquired disorders of phosphate homeostasis that are caused by either high or low circulating levels of the novel phosphaturic hormone fibroblastic growth factor 23 (FGF23). Disorders that are caused by high circulating levels of FGF23 are characterized by hypophosphatemia, decreased production of 1,25-dihydroxyvitamin D, and rickets/osteomalacia. On th...

متن کامل

FGF-23: More Than a Regulator of Renal Phosphate Handling?

Fibroblast growth factor 23 (FGF-23) is likely to be the most important regulator of phosphate homeostasis, which mediates its functions through FGF receptors and the coreceptor Klotho. Besides reducing expression of the sodium-phosphate cotransporters NPT2a and NPT2c in the proximal tubules, FGF-23 inhibits the renal 1α-hydroxylase and stimulates the 24-hydroxylase, and it appears to reduce pa...

متن کامل

The challenge of controlling phosphorus in chronic kidney disease.

The pathogenesis and management of chronic kidney disease-mineral bone disorders (CKD-MBD) has experienced major changes, but the control of serum phosphorus at all stages of CKD still seems to be a key factor to improve clinical outcomes. High serum phosphorus is the most important uremia-related, non-traditional risk factor associated with vascular calcification in CKD patients and in the gen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Society of Nephrology : JASN

دوره 18 7  شماره 

صفحات  -

تاریخ انتشار 2007